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Using a computer-controlled resonant-bar apparatus at frequencies near 5 kHz, we determined 
the temperature-dependent (86-732 K) Young's modulus of a ceramic-ceramic composite 
with a 0.30 volume fraction of SiC whiskers in an AI20 3 matrix. Using a megahertz-frequency 
pulse-echo method, it was verified that the composite shows little anisotropy (variation of the 
elastic properties with direction). Using a scattered-plane-wave ensemble-average method, we 
modelled the ambient-temperature elastic constants and found good model-observation 
agreement. To model the behaviour of the Young's modulus with temperature, Varshni's three- 
parameter relationship for Einstein-oscillator monocrystals was used. Again, good 
model-observation agreement was found. The mechanical-loss spectrum showed no 
remarkable features, indicating good whisker-matrix interface properties up to 732 K. 

1. Introduction 
For composite materials, elastic constants provide 
fundamental material characterization, they enter 
prominently into various solid-mechanics models, and 
they relate many engineering properties, such as the 
load-deflection, the thermoelastic stress, the internal 
strain (residual stress), and the fracture toughness. 

The present study focused on a ceramic-ceramic 
composite, with SiC whiskers oriented randomly in an 
A120 3 matrix. Using a megahertz-frequency pulse- 
echo method; the complete ambient-temperature 
elastic constants were determined, including the direc- 
tional dependence. Using a kilohertz-frequency re- 
sonant-bar apparatus, the 86-732 K temperature de- 
pendence of the Young's (or extension) modulus was 
determined. 

2. Materials  
From a commercial source, composite materials were 
obtained having been processed into plates as de- 
scribed by Homeny et al. [-1]. The whiskers were s-SiC 
monocrystals with an average diameter of 0.6 lam and 
an aspect ratio ranging from 17 to 133. s-SiC posses- 
ses a hexagonal crystal structure and thus it has five 
independent elastic constants, which remain un- 
known. Elastic constants of cubic I3-SiC show only a 
small to moderate anisotropy [2]; thus it can be 
assumed that s-SiC also shows only a small to moder- 
ate elastic anisotropy, and the numbers given below 
confirm this. The A120 3 powder showed a 0.3-0.5 gm 
grain size. Fig. 1 shows the microstructure. 
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The intended composition was 25mass% or 
29.3 vol %. From measured mass densities, the vol- 
ume fraction of c was calculated as 0.308. From 
quantitative optical microscopy, a value of c = 0.286 
was obtained. For  the present purposes, c = 0.30 
taken as the correct value. Table I shows the measured 
mass density. Because it agreed within 0.5% with the 
theoretical values, the possible effects of voids were 
ignored. 

3. Measurements 
3.1. Megahertz-frequency pulse-echo- 

superposition 
For brevity, only the following values from I-3] are 
given: quartz transducers (x-cut and ac-cut), frequen- 
cies near 5 MHz, specimen thickness 5 mm. Fig. 2 
shows a pulse-echo pattern. 

3.2. Resonant-bar apparatus 
The free-free-mode resonant flexural eigenvibrations 
were excited in a rectangular-cross-section bar (5 mm 
by 1 mm by 5 cm) using an apparatus described by 
Weller and T6r6k [4]. These eigenvibrations are de- 
termined entirely by the specimen's mass density, 
geometry and elastic constants. From Bernoulli-Euler 
and Timoshenko beam theory, the Young's modulus 
is 

E = 0.9642p(l /h)4f2F (1) 

where p denotes the mass density, ! is the length, h is 
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results in Table II show that these materials exhibit a 
near elastic isotropy for the variations of the sound 
velocity with direction. The coordinate system used 
had x a perpendicular to the plate, x2 was an arbitrary 
direction in the plate, and x 3 was the third orthogonal 
direction. To check the composite-material elastic 
constants, the Young's modulus E, was measured by a 
kilohertz-frequency composite-oscillator resonance 
method [5]; it was found that E = 408.2 GPa, within 
one part in one thousand of the megahertz-frequency 
pulse-echo measurement. 

Fig. 3 shows the temperature variation o f f  2 and E. 
The E(T) curve was normalized by requiring it to pass 
through 408 GPa  at 300 K. 

Figure 1 The microstructure of the SiCw/A120 3 composite. The 
fibres appear as lighter randomly oriented needles with a nearly 
homogeneous distribution. 

T A B L E  I Elastic constants of the composite and its constituents 

AI203" SiC b SiC/A120 3 

Measured Calculated 

p (gcm -3) 3.986 3.181 3.730 3.745 
G (GPa) 163.2 178.6 166.9 167.7 
E (GPa) 403.3 417.8 407.6 408.1 
B (GPa) 254.4 210.7 243.5 240.4 
v 0.236 0.170 0.221 0.217 

a From [7]. 
bFrom [8]; modified to ct-SiC(4H) by the method in [9]. 

5. Discussion 
5.1. Ambient-temperature modelling 
To model the composite's elastic constants, a scat- 
tered-wave ensemble-average method given by Led- 
better and Datta [-6] was used. That study considered 
SiC particles (prolate spheroids, c/a ~- 3.0) in an alumi- 
nium matrix. However, the method is quite general, 
and it applies to any spheroidal ellipsoid in any matrix. 
Such ellipsoids include whiskers and fibres. Because 

TAB L E I I The directional variation of the sound velocities 

1)ijkl Velocity (cmgs 1) 

Ul l l l  1.118 
u2222 1.118 
v1212 0.669 
u2121 0.667 
v13~3 0.668 
v2a23 0.672 

Figure 2 A pulse-echo-pattern oscilloscope display for the com- 
posite for a longitudinal wave at 10 MHz in the xl direction. The 
transit time, measured between the leading cycle of the first two 
echoes, is shown expanded at the bottom of the figure. 

the thickness, f is the fundamental-mode eigenfre- 
quency, and F is a correction factor that depends on 
the specimen shape and on the Poisson ratio. For our 
specimens, F = 1.0026. 

4. Results 
Table I shows the ambient-temperature-measurement 
results together with values for both constituents. The 
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Figure 3 The temperature variation of the squared eigenfrequency 
and the Young's modulus. The curve represents the Varshni rela- 
tionship of Equation 2. E is normalized to its value at T = 300 K. 
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the details have been given elsewhere [5] only a 
minimum statement is given here. 

The analysis considers multiple scattering of plane 
waves from inclusions. Deriving the relationship for 
the total scattered field involves a three-step deter- 
mination of three quantities: 

1. the'field scattered from a single inclusion; 
2. the exciting field acting on a single inclusion, i 

(the sum of the incident field and the field arising from 
N scatterers); and 

3. the total field arising from all of the possible i-j 
interactions. 

As input for the calculations, a Voigt-Reuss-Hill 
average was used for the monocrystal A120 3 elastic 
constants reported by Gieske and Barsch [7]. 

For C-SiC, the Voigt-Reuss-Hill average of the 
monocrystal C~j reported by Arlt and Schodder [8] 
was used. They reported the results for a-SiC (6H), 
which we converted to the C-SiC (4H) case using a 
method described by Lyubimskii [9]. The known 
elastic constants of C-SiC (6H) give fair, but slightly 
high, predictions. Converting these to C-SiC (4H) 
values improves the measurement-modelling agree- 
ment. For the modelling, we chose an effective whisker 
aspect ratio of c/a = 75. The results vary only slightly 
with this ratio. 

5.2. Temperature dependence 
To model the E(T) behaviour, we used the following 
three-parameter relationship derived by Varshni [10] 
for monocrystalline solids 

s 
E(T) = Eo (2) 

exp(t /T)-  1 

Here, E denotes the zero-temperature Young's modu- 
lus, s is an adjustable parameter which is physically 
related to the zero-point vibrations, and t is an adjust- 
able parameter related to the effective Einstein tem- 
perature. For the f2(T) curve, we obtained the fitting 
parameters fo z = 26.02kHz z, s = 1.2747 and t 
= 518.1 K. The last parameter implies a Debye tem- 

perature of (4/3)518 = 691 K. For the constituent ma- 
terials, the reported [11, 12] Debye temperatures are 
1035 and l l 1 6 K  for A120 a and C-SiC. Thus, the 
SiC-AI20 3 composite shows a surprisingly soft tem- 
perature behaviour. Whether this softness reflects in- 
terphase boundaries remains uncertain. 

6. Conclusions 
From this study, we reached six conclusions. 

1. The 0.30SiCw/AI20 3 composite shows practic- 
ally isotropic elastic constants. This indicates a ran- 
dom whisker-orientation distribution. 

2. The modelling-measurement agreement is ex- 
cellent, to within about 1%. The model used a scatter- 
ed-plane-wave ensemble average. 

3. The essentially identical kilohertz-frequency and 
megahertz-frequency Young's moduli suggest that 
there is no appreciable dispersion. 

4. Varshni's three-parameter relationship, de- 
veloped for monocrystals, fits the E(T) behaviour very 
well. 

5. The low Debye temperature inferred from E(T) 
suggests a softening that could reflect the interphase- 
boundary contribution to the elastic constant. 

6. At kilohertz frequencies, between 86 and 732 K, 
the composite shows no remarkable feature in its 
mechanical-loss spectrum. Thus, this property does 
not provide a chance to study the interphase-bound- 
ary behaviour. 
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